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Abstract. The intensive research activity in analysis of social media and micro-
blogging data in recent years suggests the necessity and great potential of 
platforms that can efficiently store, query, analyze, and visualize social media 
data. To support these “social media observatories” effectively, a storage platform 
must satisfy special requirements for loading and storage of multi-terabyte 
datasets, as well as efficient evaluation of queries involving analysis of the text of 
millions of social updates. Traditional inverted indexing techniques do not meet 
such requirements. As a solution, we propose a general indexing framework, 
IndexedHBase, to build specially customized index structures for facilitating 
efficient queries on an HBase distributed data storage system. IndexedHBase is 
used to support a social media observatory that collects and analyzes data obtained 
through the Twitter streaming API. We develop a parallel query evaluation 
strategy that can explore the customized index structures efficiently, and test it on 
a set of typical social media data queries. We evaluate the performance of 
IndexedHBase on FutureGrid and compare it with Riak, a widely adopted 
commercial NoSQL database system. The results show that IndexedHBase 
provides a data loading speed that is six times faster than Riak and is significantly 
more efficient in evaluating queries involving large result sets. 
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1. Introduction 

Data-intensive computing brings challenges in both large-scale batch analysis and 
real-time streaming data processing. To meet these challenges, improvements to 
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various levels of cloud storage systems are necessary. Specifically, regarding the 
problem of search in Big Data, the usage of indices to facilitate query evaluation 
has been a well-researched topic in the area of databases [12], and inverted indices 
[23] are specially designed for full-text search. A basic idea is to first build index 
data structures through a full scan of data and documents and then facilitate fast 
access to the data via indices to achieve highly optimized search performance. 

Beyond these system features, it is a challenge to enable real-time search and 
efficient analysis over a broader spectrum of social media data scenarios. For 
example, Derczynski et al. [10] discussed the temporal and spatial challenges in 
context-aware search and analysis on social media data. Padmanabhan et al. 
presented FluMapper [16], an interactive map-based interface for flu-risk analysis 
using near real-time processing of social updates collected from the Twitter 
streaming API [19]. As an additional scenario within this line of research, we 
utilize Truthy (http://truthy.indiana.edu) [14], a public social media observatory 
that analyzes and visualizes information diffusion on Twitter. Research performed 
on the data collected by this system covers a broad spectrum of social activities, 
including political polarization [6,xx], congressional elections [11,xx], protest 
events [7,8], and the spread of misinformation [xx,xx]. Truthy has also been 
instrumental in shedding light on communication dynamics such as user attention 
allocation [21] and social link creation [4]. This platform processes and analyzes 
some general entities and relationship, contained in its large-scale social dataset, 
such as tweets, users, hashtags, retweets, and user-mentions during specific time 
windows of social events. Truthy consumes a stream that includes a sample of 
public tweets. Currently, the total size of historical data collected continuously by 
the system since August 2010 is approximately 10 Terabytes (stored in 
compressed JSON format). At the time of this writing, the data rate of the Twitter 
streaming API is in the range of 45-50 million tweets per day, leading to a growth 
of approximately 20GB per day in the total data size.  

This chapter describes our research towards building an efficient and scalable 
storage platform for this large set of social microblogging data collected by the 
Truthy system. Many existing NoSQL databases, such as Solandra (now known as 
DataStax) [9] and Riak [18], support distributed inverted indices [23] to facilitate 
searching text data. However, traditional distributed inverted indices are designed 
for text retrieval applications; they may incur unnecessary storage and 
computation overhead during indexing and query evaluation, and thus they are not 
suitable for handling social media data queries. For example, the issue of how to 
efficiently evaluate temporal queries involving text search on hundreds of millions 
of social updates remains a challenge. As a possible solution, we propose 
IndexedHBase, a general, customizable indexing framework. Current 
implementation is based on HBase [2] as the underlying storage platform. 
IndexedHBase provides users with the added flexibility to define the most suitable 
index structures to facilitate their queries. Using Hadoop MapReduce [1] we 
implement a parallel query evaluation strategy that can make the best use of the 
customized index structures to achieve efficient evaluation of social media data 

http://truthy.indiana.edu/
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queries typical for an application such as Truthy. We develop efficient data 
loading strategies that can accommodate fast loading of historical files as well as 
fast processing of streaming data from real-time tweets. We evaluate the 
performance of IndexedHBase on FutureGrid [20]. Our preliminary results show 
that, compared with Riak, IndexedHBase is significantly more efficient. It is six 
times faster for data loading, while requiring much less storage. Furthermore, it is 
clearly more efficient in evaluating queries derived from large result sets. 

The rest of this chapter is organized as follows. Section 2 analyzes the 
characteristics of data and queries. Section 3 describes the architecture of 
IndexedHBase and explains the design and implementation of its data loading, 
indexing, and query evaluation strategies. Section 4 evaluates the performance of 
IndexedHBase and compares it with Riak. Section 5 discusses related work. 
Section 6 concludes and describes our future work. 

2. Data and Query Patterns 

The entire dataset consists of two parts: historical data in .json.gz files, and real-
time data collected from the Twitter streaming API. Fig. 1 illustrates a sample data 
item, which is a structured JSON string containing information about a tweet and 
the user who posted it. Furthermore, if the tweet is a retweet, the original tweet 
content is also included in a “retweeted_status” field. For hashtags, user-mentions, 
and URLs contained in the text of the tweet, an “entities” field is included to give 
detailed information, such as the ID of the mentioned user and the expanded 
URLs. 

In social network analysis, the concept of “meme” is often used to represent a 
set of related posts corresponding to a specific discussion topic, communication 
channel, or information source shared by users on platforms such as Twitter. 
Memes can be identified through elements contained in the text of tweets, such as 
keywords, hashtags (e.g., #euro2012), user-mentions (e.g., @youtube), and URLs. 
Our social media observatory, Truthy, supports a set of temporal queries for 
extracting and generating various information about tweets, users, and memes. 
These queries can be categorized into two subsets. The first contains basic queries 
for getting the ID or content of tweets created during a given time window from 
their text or user information, including: 

get-tweets-with-meme (memes, time_window) 
get-tweets-with-text (keywords, time_window) 
get-tweets-with-user (user_id, time_window) 
get-retweets (tweet_id, time_window) 

For the parameters, time_window is given in the form of a pair of strings 
marking the start and end points of a time window, e.g., [2012-06-08T00:00:00, 
2012-06-23T23:59:59]. The memes parameter is given as a list of hashtags, user-
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mentions, or URLs; memes and keywords may contain wildcards, e.g., “#occupy*” 
will match all tweets containing hashtags starting with “#occupy.”  

 
Fig. 1. An example tweet in JSON format 

The second subset of queries extract needed information from the tweets 
returned by queries in the first subset. These include timestamp-count, user-post-
count, meme-post-count, meme-cooccurrence-count, get-retweet-edges, and get-
mention-edges. Here for example, user-post-count returns the number of posts 
about a given meme by each user. Each “edge” has three components: a “from” 
user ID, a “to” user ID, and a “weight” indicating how many times the “from” user 
has retweeted the tweets from the “to” user or mentioned the “to” user in his/her 
tweets. 

The most significant characteristic of these queries is that they all take a time 
window as a parameter. This originates from the temporal nature of social 
activities. An obvious brute-force solution is to scan the whole dataset, try to 
match the content and creation time of each tweet with the query parameters, and 
generate the results using information contained in the matched tweets. However, 
due to the drastic difference between the size of the entire dataset and the size of 
the query result, this strategy is prohibitively expensive. For example, in the time 
window [2012-06-01, 2012-06-20] there are over 600 million tweets, while the 
number of tweets containing the most popular meme “@youtube” is less than two 
million, which is smaller by more than two orders of magnitude.  

Traditional distributed inverted indices [23], supported by many existing 
distributed NoSQL database systems such as Solandra (DataStax) [9] and Riak 
[18], do not provide the most efficient solution to locate relevant tweets by their 
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text content. One reason is that traditional inverted indices are mainly designed for 
text retrieval applications, where the main goal is to efficiently find the top K 
(with a typical value of 20 or 50 for K) most relevant text documents regarding a 
query comprising a set of keywords. To achieve this goal, information, such as 
frequency and position of keywords in the documents, is stored and used for 
computing relevance scores between documents and keywords during query 
evaluation. In contrast, social media data queries are designed for analysis 
purposes, meaning that they have to process all the related tweets, instead of the 
top K most relevant ones, to generate the results. Therefore, data regarding 
frequency and position are extra overhead for the storage of inverted indices, and 
relevance scoring is unnecessary in the query evaluation process. The query 
evaluation performance can be further improved by removing these items from 
traditional inverted indices.  

Secondly, social media queries do not favor query execution plans using 
traditional inverted indices. Fig. 2 illustrates a typical query execution plan for 
get-tweets-with-meme, using two separate indices on memes and tweet creation 
time. This plan uses the meme index to find the IDs of all tweets containing the 
given memes and utilizes the time index to find the set of tweet IDs within the 
given time window, finally computing the intersection of these two sets to get the 
results. Assuming the size of the posting lists for the given memes to be m, and the 
number of tweet IDs coming from the time index to be n, the complexity of the 
whole query evaluation process will be O(m + n) = O(max(m, n)), using a merge-
based or hashing-based algorithm for the intersection operation. However, due to 
the characteristics of large social media and microblogging datasets, there is 
normally an orders-of-magnitude difference between m and n, as discussed above. 
As a result, although the size of the query result is bounded by min(m, n), a major 
part of query evaluation time is actually spent on scanning and checking irrelevant 
entries of the time index. In classic text search engines, techniques such as 
skipping or frequency-ordered inverted lists [23] may be utilized to quickly return 
the top K most relevant results without evaluating all the related documents. 
However, such optimizations are not applicable to our social media observatory. 
Furthermore, in case of a high cost estimation for accessing the time index, the 
search engine may choose to only use the meme index and generate the results by 
checking the content of relevant tweets. However, valuable time is still wasted in 
checking irrelevant tweets falling out of the given time window. The query 
evaluation performance can be further improved if the unnecessary scanning cost 
can be avoided. 
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Fig. 2. A typical query execution plan using indices on meme and creation time 

We propose using a customized index structure in IndexedHBase, as illustrated 
in Fig. 3. It merges the meme index and time index, and replaces the frequency 
and position information in the posting lists of the meme index with creation time 
of corresponding tweets. Facilitated by this customized index structure, the query 
evaluation process for get-tweets-with-meme can be easily implemented by going 
through the index entries related to the given memes and selecting the tweet IDs 
associated with a creation time within the given time window. The complexity of 
the new query evaluation process is O(m), which is significantly lower than 
O(max(m, n)). To support such index structures, IndexedHBase provides a general 
customizable indexing framework, which will be explained in Section 3. 

 

 
Fig. 3. A customized meme element index structure 

3. Design and Implementation of IndexedHBase 

3.1 System Architecture 

HBase is used to host the entire dataset and related indices with two sets of tables: 
data tables for the original data, and index tables containing customized index 
structures for query evaluation (see Fig. 4). The customized indexing framework 
supports two mechanisms for building index tables: online indexing that indexes 
data upon upload to the tables, and batch indexing for building new index 
structures from existing data tables. Two data loading strategies are implemented 
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for historical and streaming data. The parallel query evaluation strategy provides 
efficient evaluation mechanisms for all queries, and is used by upper-level 
applications, such as Truthy, to generate various statistics and visualizations.  

 
Fig. 4. System Architecture of IndexedHBase 

3.2 Customizable Indexing Framework 

Table Schemas on HBase 

Working off the extendible “BigTable” data model [5], we design the table 
schemas in Fig. 5. Tables are managed in units of months. This has two benefits. 
First, the loading of streaming data only changes the tables relative to the current 
month. Secondly, during query evaluations, the amount of index data and original 
data scanned is limited by the time window parameter. 

Some details need to be clarified before proceeding further. Each table contains 
only one column family, e.g. “details” or “tweets”. The user table uses a 
concatenation of user ID and tweet ID as the row key, because analysis benefits 
from tracking changes in a tweet’s user metadata. For example, a user can change 
profile information, which can give insights into her behavior. Another meme 
index table is created for the included hashtags, user-mentions, and URLs. This is 
because some special cases, such as expandable URLs, cannot be handled 
properly by the text index. The memes are used as row keys, each followed by a 
different number of columns, named after the IDs of tweets containing the 
corresponding meme. The timestamp of the cell value marks the tweet creation 
time (Fig. 5). 
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Fig. 5. Table schemas used in IndexedHBase for Twitter data 

Using HBase tables for customized index has several advantages. The data 
model of HBase can scale out horizontally for distributed index structure and 
embed additional information within the columns. Since the data access pattern in 
social media analysis is “write-once-read-many”, IndexedHBase builds a separate 
table for each index structure for easy update and access. Rows in the tables are 
sorted by row keys, facilitating prefix queries through range scans over index 
tables. Using Hadoop MapReduce, the framework can generate efficient parallel 
analysis on the index data, such as meme popularity distribution [21]. 

Customizable Indexer Implementation 

IndexedHBase implements a customizable indexer library, shown in Fig. 6, to 
generate index table records automatically according to the configuration file and 
insert them upon the client application’s request. 

 
Fig. 6. Components of customizable indexer 



9 

Fig. 7 gives an example of the index configuration file in XML format 
containing multiple “index-config” elements that hold the mapping information 
between one source table and one index table. This element can flexibly define 
how to generate records for the index table off a given row from the source table. 
For more complicated index structures, users can implement a customizable 
indexer and use it by setting the “indexer-class” element. 

 
Fig. 7. An example customized index configuration file 

Both general and user-defined indexers must implement a common interface 
which declares one index() method, as presented in Fig. 8. This method takes the 
name and row data of a source table as parameters and returns a map as a result. 
The key of each map entry is the name of one index table, and the value is a list of 
that table’s records. 

Upon initialization, the general customizable indexer reads the index 
configuration file from the user. If a user-defined indexer class is specified, a 
corresponding indexer instance will be created. When index() is invoked during 
runtime, all related “index-config” elements are used to generate records for each 
index table, either by following the rules defined in “index-config” or by invoking 
a user-defined indexer. Finally, all index table names and records are added to the 
result map and returned to the client application. 

 
Fig. 8. Pseudocode for the “CustomizableIndexer” interface 

Online Indexing Mechanism and Batch Indexing Mechanism 

IndexedHBase provides two means of indexing data: online and batch. The online 
mechanism is implemented through the insert() method of the general 
customizable indexer, displayed in Fig. 6. The client application invokes the 
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insert() method of the general customizable indexer to insert one row into a source 
table. The indexer will first insert the given row into the source table and then 
generate index table records for this row by invoking index() and insert them into 
the corresponding index tables. Therefore, from the client application’s 
perspective, data in the source table are indexed “online” when first inserted into 
the table. 

The batch indexing mechanism is designed for generating new customized 
index tables after all the data have been loaded into the source table. This 
mechanism is implemented as a “map-only” MapReduce job using the source 
table as input. The job accepts a source table and index table name as parameters 
and starts multiple mappers to index data in the source table in parallel, each 
processing one region of the table. Each mapper works as a client application to 
the general customizable indexer and creates one indexer instance at its 
initialization time. The indexer is initialized using the given index table name so 
that when index() is invoked, it will only generate index records for that single 
table. The map() function takes a <key, value> pair as input, where “key” is a row 
key in the source table and “value” is the corresponding row data. For each row of 
the source table, the mapper uses the general customizable indexer to generate 
index table records and write these records as output. All output records are 
handled by the table output format, which will automatically insert them into the 
index table. 

3.3 Data Loading Strategies 

IndexedHBase supports distributed loading strategies for both streaming data and 
historical data. Fig. 9 shows the architecture of the streaming data loading 
strategy, where one or more distributed loaders are running concurrently and are 
connected to the same stream using the Twitter streaming API. Each loader is 
assigned a unique ID and works as a client application to the general customizable 
indexer. Upon receiving a tweet JSON string, the loader will first take the tweet 
ID and do a modulus operation over the total number of loaders in the system. If 
the result equals its loader ID, it will load the tweet to IndexedHBase. Otherwise 
the tweet is skipped. To load a tweet, the loader first generates records for the 
tweet table and user table based on the JSON string, then loads them into the 
tables by invoking the insert() method of the general customizable indexer, which 
will complete online indexing and update all the data tables as well as the relevant 
index tables. 
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Fig. 9. Streaming data loading strategy 

The historical data loading strategy is implemented as a MapReduce program. 
One separate job is launched to load the historical files for each month, and 
multiple jobs can be running simultaneously. Each job starts multiple mappers in 
parallel, each responsible for loading one file. At running time, each line in the 
.json.gz file is given to the mapper as one input, which contains the string of one 
tweet. The mapper first creates records for the tweet table and user table and then 
invokes the general customizable indexer to get all the related index table records. 
All table records are handled by the multi-table output format, which 
automatically inserts them into the related tables. Finally, if the JSON string 
contains a “retweeted_status”, the corresponding substring will be extracted and 
processed in the same way. 

3.4 Parallel Query Evaluation Strategy 

We develop a two-phase parallel query evaluation strategy viewable in Fig. 10. 
For any given query, the first phase uses multiple threads to find the IDs of all 
related tweets from the index tables, and saves them in a series of files containing 
a fixed number (e.g., 30,000) of tweet IDs. The second phase launches a 
MapReduce job to process the tweets in parallel and extract the necessary 
information to complete the query. For example, to evaluate user-post-count, each 
mapper in the job will access the tweet table to figure out the user ID 
corresponding to a particular tweet ID, count the number of tweets by each user, 
and output all counts when it finishes. The output of all the mappers will be 
processed to finally generate the total tweet count of each user ID. 

Two aspects of the query evaluation strategy deserve further discussion. First, 
as described in Section 2, prefix queries can be constructed by using parameters 
such as “#occupy*”. IndexedHBase provides two options for getting the related 
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tweet IDs in the first phase. One is simply to complete a sequential range scan of 
rows in the corresponding index tables. The other is to use a MapReduce program 
to complete parallel scans over the range of rows. The latter option is only faster 
for parameters covering a large range spanning multiple regions of the index table. 

Second, the number of tweet IDs in each file implies a tradeoff between 
parallelism and scheduling overhead. When this number is set lower, more 
mappers will be launched in the parallel evaluation phase, which means the 
amount of work done by a mapper decreases while the total task scheduling 
overhead increases. The optimal number depends on the total number of related 
tweets and the amount of resources available in the infrastructure. We set the 
default value of this number to 30,000 and leave it configurable by the user. 
Future work will explore automatic optimization. 

 
Fig. 10. Two-phase parallel evaluation process for an example user-post-count query 

4. Performance Evaluation Results and Comparison with Riak 

4.1 Testing Environment Configuration 

We use eight nodes on the Bravo cluster of FutureGrid to complete tests for both 
IndexedHBase and Riak. The hardware configuration for all eight nodes is listed 
in Table 1. Each node runs CentOS 6.4 and Java 1.7.0_21. For IndexedHBase, 
Hadoop 1.0.4 and HBase 0.94.2 are used. One node is used to host the HDFS 
headnode, Hadoop jobtracker, Zookeeper, and HBase master. The other seven 
nodes are used to host HDFS datanodes, Hadoop tasktrackers, and HBase region 
servers. The data replication level is set to two on HDFS. The configuration 
details of Riak will be given in Section 4.2. In addition to Bravo, we also use the 
Alamo HPC cluster of FutureGrid to test the scalability of the historical data 
loading strategy of IndexedHBase, since Alamo can provide a larger number of 
nodes through dynamic HPC jobs. Software configuration of Alamo is mostly the 
same as Bravo. 
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Table 1. Per-node configuration on Bravo and Alamo Clusters 

Cluster CPU RAM Hard 
Disk 

Network 

Bravo 8 * 2.40GHz (Intel Xeon E5620) 192G 2T 40Gb InfiniBand 
Alamo 8 * 2.66GHz (Intel Xeon X5550) 12G 500G 40Gb InfiniBand 

4.2 Configuration and Implementation on Riak 

Riak is a distributed NoSQL database for storing data in the form of <key, value> 
objects. It uses a P2P architecture to organize the distributed nodes and distributes 
data objects among them using consistent hashing. Data are replicated to achieve 
high availability, and failures are handled by a handoff mechanism among 
neighboring nodes. A “Riak Search” module can build distributed inverted indices 
on data objects for full-text search purposes. Users can use buckets to organize 
their data objects and configure indexed fields on the bucket level. Riak supports a 
special feature called “inline fields.” If a field is specified as an “inline” field, its 
value will be attached to the document IDs in the posting lists, as illustrated in 
Fig. 11. 

 
Fig. 11. An example of inline field (created_at) in Riak 

Similar to our customized index tables in IndexedHBase, inline fields can be 
used to carry out an extra filtering operation to speed up queries involving 
multiple fields. However, they are different in two basic aspects. First, inline fields 
are an extension of traditional inverted indices, which means overhead such as 
frequency information and document scoring still exist in Riak Search. Second, 
customizable index structures are totally flexible in the sense that the structure of 
each index can be independently defined to contain any subset of fields from the 
original data. In contrast, if one field is defined as an inline field on Riak, its value 
will be attached to the posting lists of the indices of all indexed fields, regardless 
of whether it is useful. As an example, the “sname index table” in Fig. 5 uses the 
creation time of user accounts as timestamps, while the “meme index table” uses 
creation time of tweets. Such flexibility is not achievable on Riak. 

In our tests, all eight nodes of Bravo are used to construct a Riak ring. Each 
node runs Riak 1.2.1, using LevelDB as the storage backend. We create two 
different buckets to index data with different search schemas. The data replication 
level is set to two on both buckets. The tweet ID and JSON string of each tweet 
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are directly stored into <key, value> pairs. The original JSON string is extended 
with an extra “memes” field, which contains all the hashtags, user-mentions, and 
URLs in the tweet, separated tab characters. Riak Search is enabled on both 
buckets, and the user_id, memes, text, retweeted_status_id, user_screen_name, 
and created_at fields are indexed. Specifically, created_at is defined as a separate 
indexed field on one bucket, and as an “inline only” field on the other bucket, 
meaning that it does not have a separate index but is stored together with the 
indices of other fields. 

Riak provides a lightweight MapReduce framework for users to query the data 
by defining MapReduce functions in JavaScript. Furthermore, Riak supports 
MapReduce over the results of Riak Search. We use this feature to implement 
queries, and Fig. 12 shows an example query implementation. When this query is 
submitted, Riak will first use the index on “memes” to find related tweet objects 
(as specified in the “input” field), then apply the map and reduce functions to 
these tweets (as defined in the “query” field) to get the final result. 

 

 
Fig. 12. An example query implementation on Riak 

4.3 Data Loading Performance 

Historical Data Loading Performance 

We use all the .json.gz files from June 2012 to test the historical data loading 
performance of IndexedHBase and Riak. The total data size is 352GB. With 
IndexedHBase, a MapReduce job is launched for historical data loading, with each 
mapper processing one file. With Riak, all 30 files are distributed among eight 
nodes of the cluster, so each node ends up with three or four files. Then an equal 
number of threads per node were created to load all the files concurrently to the 
bucket where “created_at” is configured as an inline field. Threads continue 
reading the next tweet, apply preprocessing with the “created_at” and “memes” 
field, and then send the tweet to the Riak server for indexing and insertion. 
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Table 2. Historical data loading performance comparison 

 Loading 
time 
(hours) 

Loaded 
total data 
size (GB) 

Loaded 
original data 
size (GB) 

Loaded index 
data size (GB) 

Riak 294.11 3258 2591 667 
IndexedHBase 45.47 1167 955 212 
Riak / IndexedHBase 6.47 2.79 2.71 3.15 

Table 2 summarizes the data loading time and loaded data size on both 
platforms. We can see that IndexedHBase is over six times faster than Riak in 
loading historical data and uses significantly less disk space for storage. 
Considering the original file size of 352GB and a replication level of two, the 
storage space overhead for index data on IndexedHBase is moderate. 

We analyze these performance measurements below. By storing data with 
tables, IndexedHBase applies a certain degree of data model normalization, and 
thus avoids storing some redundant data. For example, many tweets in the original 
.json.gz files contain retweeted status, and many of them are retweeted multiple 
times. With IndexedHBase, even if a tweet is retweeted repeatedly, only one 
record is kept for it in the tweet table. With Riak, such a “popular” tweet will be 
stored within the JSON string of every corresponding retweet. The difference in 
loaded index data size clearly demonstrates the advantage of a fully customizable 
indexing framework. By avoiding frequency and position information and only 
incorporating useful fields in the index tables, IndexedHBase saves 455GB of disk 
space in storing index data, which is more than 1/3 the total loaded data size of 
1167GB. Also note that IndexedHBase compresses table data using Gzip, which 
generally provides a better compression ratio than Snappy used on Riak. 

The difference in loaded data size only explains a part of the difference in total 
loading time. Two other reasons are: 
(1) The loaders of IndexedHBase are responsible for generating both data tables 

and index tables. Therefore, the JSON string of each tweet is parsed only once 
when it is read from the .json.gz files and converted to table records. On the 
other hand, Riak uses servers for its indexing and so each JSON string is 
actually parsed twice – first by the loaders for preprocessing, and again by the 
server for indexing; 

(2) When building inverted indices, Riak not only uses more space to store the 
frequency and position information, but also spends more time collecting 
them. 

Scalable Historical Data Loading on IndexedHBase 

We test the scalability of historical data loading on IndexedHBase with the Alamo 
cluster of FutureGrid. In this test we take a dataset for two months, May and June 
2012, and measure the total loading time with different cluster sizes. The results 
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are illustrated in Fig. 13. When the cluster size is doubled from 16 to 32 data 
nodes, the total loading time drops from 142.72 hours to 93.22 hours, which 
implies a sub-linear scalability coming from the concurrent access from mappers 
of the loading jobs to HBase region servers. Nonetheless, these results clearly 
demonstrate that we get more system throughput and faster data loading speed by 
adding more nodes to the cluster. 

 
Fig. 13.  Historical data loading scalability 

to cluster size 

 
Fig. 14.  Results for streaming data loading 

test 

Streaming Data Loading Performance on IndexedHBase 

 
The purpose of streaming data loading tests is to verify that IndexedHBase can 
provide enough throughput to accommodate the growing data speed of the Twitter 
streaming API. To test the performance of IndexedHBase for handling potential 
data rates even faster than the current streams, we design a simulation test using a 
recent .json.gz file from July 3, 2013. We vary the number of distributed 
streaming loaders and test the corresponding system data loading speed. For each 
case, the whole file is evenly split into the same number of fragments as the 
loaders and then distributed across all the nodes. One loader is started to process 
each fragment. The loader reads data from the stream of the local file fragment 
rather than from the Twitter streaming API. So this test measures how the system 
performs when each loader gets an extremely high data rate that is equal to local 
disk I/O speed. 

Fig. 14 shows the total loading time when the number of distributed loaders 
increases by powers of two from one to 16. Once again, concurrent access to 
HBase region servers results in a decrease in speed-up as the number of loaders is 
doubled each time. The system throughput is almost saturated when we have eight 
distributed loaders. For the case of eight loaders, it takes 3.85 hours to load all 
45,753,194 tweets, indicating the number of tweets that can be processed per day 
on eight nodes is about six times the current daily data rate. Therefore, 
IndexedHBase can easily handle a high-volume stream of social media data. In the 
case of vastly accelerated data rates, as would be the case for the Twitter firehose 
(a stream of all public tweets), one could increase the system throughput by 
adding more nodes. 
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4.4 Query Evaluation Performance 

Separate Index Structures vs. Customized Index Structures 

As discussed in Section 2, one major purpose of using customized index structures 
is to achieve lower query evaluation complexity compared to traditional inverted 
indices on separate data fields. To verify this, we use a simple get-tweets-with-
meme query to compare the performance of IndexedHBase with a solution using 
separate indices on the fields of memes and tweet creation time, which is 
implemented through the Riak bucket where “created_at” is defined as a 
separately indexed field. 
 

 

Fig. 15. Query evaluation time with 
separate meme and time indices (Riak) 

 

Fig. 16. Query evaluation time with 
customized meme index (IndexedHBase) 

In this test we load four days’ data to both IndexedHBase and the Riak bucket 
and measure the query evaluation time with different memes and time windows. 
For memes, we choose “#usa”, “#ff”, and “@youtube”, each contained in a 
different subset of tweets. The “#ff” hashtag is a popular meme for “Follow 
Friday.” For each meme, we use three different time windows with a length 
between one and three hours. Queries in this test only return tweet IDs – they 
don’t launch an extra MapReduce phase to get the content. Figs. 15 and 16 present 
the query execution time for each indexing strategy. As shown in the plots, 
IndexedHBase not only achieves a query evaluation speed that is tens to hundreds 
of times faster, but also demonstrates a different pattern in query evaluation time. 
When separate meme index and time index are used, the query evaluation time 
mainly depends on the length of time window; the meme parameter has little 
impact. In contrast, using a customized meme index, the query evaluation time 
mainly depends on the meme parameter. For the same meme, the evaluation time 
only increases marginally as the time window gets longer. These observations 
confirm our theoretical analysis in Section 2. 
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Query Evaluation Performance Comparison 

This set of tests is designed to compare the performance of Riak and 
IndexedHBase for evaluating queries involving different numbers of tweets and 
different result sizes. Since using separate indices has proven inefficient on Riak, 
we choose to test the query implementation using “created_at” as an inline field. 
Queries are executed on both platforms against the data loaded in the historical 
data loading tests. For query parameters, we choose the popular meme 
“#euro2012,” along with a time window with a length varied from three hours to 
16 days. The start point of the time window is fixed at 2012-06-08T00:00:00, and 
the end point is correspondingly varied exponentially from 2012-06-08T02:59:59 
to 2012-06-23T23:59:59. This time period covers a major part of the 2012 UEFA 
European Football Championship. The queries can be grouped into three 
categories based on the manner in which they are evaluated on Riak and 
IndexedHBase. 
(1) No MapReduce on either Riak or IndexedHBase 

The meme-post-count query falls into this category. On IndexedHBase, query 
evaluation is done by simply going through the rows in meme index tables for 
each given meme and counting the number of qualified tweet IDs. In the case of 
Riak, since there is no way to directly access the index data, this is accomplished 
by issuing an HTTP query for each meme to fetch the “id” field of matched 
tweets. Fig. 17 shows the query evaluation time on Riak and IndexedHBase. As 
the time window gets longer, the query evaluation time increases for both. 
However, the absolute evaluation time is much shorter for IndexedHBase, because 
Riak has to spend extra time to retrieve the “id” field. 
(2) No MapReduce on IndexedHBase; MapReduce on Riak 

The timestamp-count query belongs to this category. Inferring from the schema 
of the meme index table, this query can also be evaluated by only accessing the 
index data on IndexedHBase. On Riak it is implemented with MapReduce over 
Riak search results, where the MapReduce phase completes the timestamp 
counting based on the content of the related tweets. Fig. 18 shows the query 
evaluation time on both platforms. Since IndexedHBase does not need to analyze 
the content of the tweets at all, its query evaluation speed is orders of magnitude 
faster than Riak. 
(3) MapReduce on both Riak and IndexedHBase 

Most queries require a MapReduce phase on both Riak and IndexedHBase. Fig. 
19 shows the evaluation time for several of them. An obvious trend is that Riak is 
faster on queries involving a smaller number of related tweets, but IndexedHBase 
is significantly faster on queries involving a larger number of related tweets and 
results. Fig. 20 lists the results sizes for two of the queries. The other queries have 
a similar pattern. 
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Fig. 17. Query evaluation time for meme-

post-count 
Fig. 18. Query evaluation time for 

timestamp-count 

 
Fig. 19. Query evaluation time for queries requiring MapReduce on both platforms 
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Fig. 20. Result sizes for get-tweets-with-meme (top row) and  

get-mention-edges (bottom row) queries 
 
The main reason for the observed performance difference is the different 

characteristics of the MapReduce framework on these two platforms. 
IndexedHBase relies on Hadoop MapReduce, which is designed for fault tolerant 
parallel processing of large batches of data. It implements the full semantics of the 
MapReduce computing model and applies a comprehensive initialization process 
for setting up the runtime environment on the worker nodes. Hadoop MapReduce 
uses disks on worker nodes to save intermediate data and does grouping and 
sorting before passing them to reducers. A job can be configured to use zero or 
multiple reducers. Since most social media queries use time windows at the level 
of weeks or months, IndexedHBase can handle these long time period queries 
well. 

The MapReduce framework on Riak, on the other hand, is designed for 
lightweight use cases where users can write simple query logic with JavaScript 
and get them running on the data nodes quickly without a complicated 
initialization process. There is always only one reducer running for each 
MapReduce job. Intermediate data are transmitted directly from mappers to the 
reducer without being sorted or grouped. The reducer relies on its memory stack to 
store the whole list of intermediate data, and has a default timeout of only five 
seconds. Therefore, Riak MapReduce is not suitable for processing the large 
datasets produced by queries corresponding to long time periods. 

Improving Query Evaluation Performance with Modified Index Structures 

IndexedHBase accepts dynamic changes to the index structures for efficient query 
evaluation. To verify this, we extend the meme index table to also include user 
IDs of tweets in the cell values, as illustrated in Fig. 21. Using this new index 
structure, IndexedHBase is able to evaluate the user-post-count query by only 
accessing index data. 
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Fig. 21. Extended meme index table schema Fig. 22. Query evaluation time modified 

meme index table schema 
We use the batch indexing mechanism of IndexedHBase to rebuild the meme 

index table, which takes 3.89 hours. The table size increases from 14.23GB to 
18.13GB, which is 27.4% larger. Fig. 22 illustrates the query evaluation time 
comparison. The query with the new index structure is faster by more than an 
order of magnitude. In cases where user-post-count is frequently used, the query 
speed improvement is clearly worth the additional storage required. 

5. Related Work 

IndexedHBase aims to address the temporal challenge in social media analytics 
scenarios. Derczynski et al. [10] provide a more complete list of related work 
about temporal and spatial queries involving social data. Our customizable index 
structures share similar inspiration to multiple-column indices used in relational 
databases, but index a combination of full-text and primitive-type fields. 
Compared with traditional inverted indices [23], IndexedHBase provides more 
flexibility about what fields to use as keys and entries, so as to achieve more 
efficient query evaluation with less storage and computation overhead. 

Solandra (DataStax) [9] and Riak [18] are two typical NoSQL database systems 
that support distributed inverted indices for full-text search. Specifically, Solandra 
is an offshoot of Cassandra, which uses a similar data model to HBase. 
Comparable to Riak, Cassandra also employs P2P architecture to support scalable 
data storage and relies on data replication to achieve fault-tolerance. As discussed 
in Section 2, inverted indices on Solandra and Riak are designed for text retrieval 
applications, making them unsuitable for social media analytics. 

Google’s Dremel [15] achieves efficient evaluation of aggregation queries on 
large-scale nested datasets by using distributed columnar storage and multi-level 
serving trees. Power Drill [13] explores special caching and data skipping 
mechanisms to provide even faster interactive query performance for certain 
selected datasets. Percolator [17] replaces batch indexing system with incremental 
processing for Google search. Inspired by Dremel and Power Drill, we will 
consider splitting the tweet table into more column families for even better query 
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evaluation performance. On the other hand, our customizable indexing strategies 
could also potentially help Dremel for handling aggregation queries with highly 
selective operations. 

Zaharia et al. [22] propose a fault-tolerant distributed processing model for 
streaming data by breaking continuous data streams into small batches and then 
applying existing fault-tolerance mechanisms used in batch processing 
frameworks. This idea of discretized streams will be useful for our next step of 
developing a fault-tolerant streaming data processing framework. Since streaming 
data are mainly involved in the loading and indexing phase, simpler failure 
recovery mechanisms may be more suitable. 

6. Conclusions and Future Work 

This chapter studies an efficient and scalable storage platform supporting a large 
Twitter stream that powers the Truthy system [14], a public social media 
observatory. Our experimentation with IndexedHBase led to interesting 
conclusions of general significance. Parallelization and indexing are key factors in 
addressing the sheer data size and temporal queries of social data observatories. 
Parallelism in particular requires attention to every stage of data processing. 
Furthermore, a general customizable indexing framework is necessary. Index 
structures should be flexible, rather than static, to facilitate special characteristics 
of the dataset and queries, where optimal query evaluation performance is 
achieved at lower cost in storage and computation overhead. Reliable parallel 
processing frameworks such as Hadoop MapReduce can handle large intermediate 
data and results involved in the query evaluation process.  

To the best of our knowledge, IndexedHBase is the first effort in developing a 
totally customizable indexing framework on a distributed NoSQL database. In the 
future we will add failure recovery to the distributed streaming data loading 
strategy. The efficiency of parallel query evaluation can be further improved with 
data locality considerations. Spatial queries will be supported by inferring and 
indexing spatial information contained in tweets. Thanks to the batch index 
building mechanism in IndexedHBase, adding spatial indices can be done 
efficiently without completely reloading the original dataset. Finally, we will 
integrate IndexedHBase with Hive [3] to provide a SQL-like data operation 
interface for easy implementation in social media observatories such as Truthy. 
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