
Supporting a Social Media Observatory with
Customizable Index Structures — Architecture
and Performance

Xiaoming Gao1, Evan Roth2, Karissa McKelvey1, Clayton Davis1, Andrew
Younge1, Emilio Ferrara1, Filippo Menczer1, Judy Qiu1

 1School of Informatics and Computing, Indiana University
 2Department of Computer Science & Information Technology, University of

the District of Columbia

Abstract. The intensive research activity in analysis of social media and micro-
blogging data in recent years suggests the necessity and great potential of
platforms that can efficiently store, query, analyze, and visualize social media
data. To support these “social media observatories” effectively, a storage platform
must satisfy special requirements for loading and storage of multi-terabyte
datasets, as well as efficient evaluation of queries involving analysis of the text of
millions of social updates. Traditional inverted indexing techniques do not meet
such requirements. As a solution, we propose a general indexing framework,
IndexedHBase, to build specially customized index structures for facilitating
efficient queries on an HBase distributed data storage system. IndexedHBase is
used to support a social media observatory that collects and analyzes data obtained
through the Twitter streaming API. We develop a parallel query evaluation
strategy that can explore the customized index structures efficiently, and test it on
a set of typical social media data queries. We evaluate the performance of
IndexedHBase on FutureGrid and compare it with Riak, a widely adopted
commercial NoSQL database system. The results show that IndexedHBase
provides a data loading speed that is six times faster than Riak and is significantly
more efficient in evaluating queries involving large result sets.

Keywords: Social Media Observatory, Distributed NoSQL Database,
Customizable Index Structure, Parallel Query Evaluation, IndexedHBase

1. Introduction

Data-intensive computing brings challenges in both large-scale batch analysis and
real-time streaming data processing. To meet these challenges, improvements to

2

various levels of cloud storage systems are necessary. Specifically, regarding the
problem of search in Big Data, the usage of indices to facilitate query evaluation
has been a well-researched topic in the area of databases [12], and inverted indices
[23] are specially designed for full-text search. A basic idea is to first build index
data structures through a full scan of data and documents and then facilitate fast
access to the data via indices to achieve highly optimized search performance.

Beyond these system features, it is a challenge to enable real-time search and
efficient analysis over a broader spectrum of social media data scenarios. For
example, Derczynski et al. [10] discussed the temporal and spatial challenges in
context-aware search and analysis on social media data. Padmanabhan et al.
presented FluMapper [16], an interactive map-based interface for flu-risk analysis
using near real-time processing of social updates collected from the Twitter
streaming API [19]. As an additional scenario within this line of research, we
utilize Truthy (http://truthy.indiana.edu) [14], a public social media observatory
that analyzes and visualizes information diffusion on Twitter. Research performed
on the data collected by this system covers a broad spectrum of social activities,
including political polarization [6,xx], congressional elections [11,xx], protest
events [7,8], and the spread of misinformation [xx,xx]. Truthy has also been
instrumental in shedding light on communication dynamics such as user attention
allocation [21] and social link creation [4]. This platform processes and analyzes
some general entities and relationship, contained in its large-scale social dataset,
such as tweets, users, hashtags, retweets, and user-mentions during specific time
windows of social events. Truthy consumes a stream that includes a sample of
public tweets. Currently, the total size of historical data collected continuously by
the system since August 2010 is approximately 10 Terabytes (stored in
compressed JSON format). At the time of this writing, the data rate of the Twitter
streaming API is in the range of 45-50 million tweets per day, leading to a growth
of approximately 20GB per day in the total data size.

This chapter describes our research towards building an efficient and scalable
storage platform for this large set of social microblogging data collected by the
Truthy system. Many existing NoSQL databases, such as Solandra (now known as
DataStax) [9] and Riak [18], support distributed inverted indices [23] to facilitate
searching text data. However, traditional distributed inverted indices are designed
for text retrieval applications; they may incur unnecessary storage and
computation overhead during indexing and query evaluation, and thus they are not
suitable for handling social media data queries. For example, the issue of how to
efficiently evaluate temporal queries involving text search on hundreds of millions
of social updates remains a challenge. As a possible solution, we propose
IndexedHBase, a general, customizable indexing framework. Current
implementation is based on HBase [2] as the underlying storage platform.
IndexedHBase provides users with the added flexibility to define the most suitable
index structures to facilitate their queries. Using Hadoop MapReduce [1] we
implement a parallel query evaluation strategy that can make the best use of the
customized index structures to achieve efficient evaluation of social media data

http://truthy.indiana.edu/

3

queries typical for an application such as Truthy. We develop efficient data
loading strategies that can accommodate fast loading of historical files as well as
fast processing of streaming data from real-time tweets. We evaluate the
performance of IndexedHBase on FutureGrid [20]. Our preliminary results show
that, compared with Riak, IndexedHBase is significantly more efficient. It is six
times faster for data loading, while requiring much less storage. Furthermore, it is
clearly more efficient in evaluating queries derived from large result sets.

The rest of this chapter is organized as follows. Section 2 analyzes the
characteristics of data and queries. Section 3 describes the architecture of
IndexedHBase and explains the design and implementation of its data loading,
indexing, and query evaluation strategies. Section 4 evaluates the performance of
IndexedHBase and compares it with Riak. Section 5 discusses related work.
Section 6 concludes and describes our future work.

2. Data and Query Patterns

The entire dataset consists of two parts: historical data in .json.gz files, and real-
time data collected from the Twitter streaming API. Fig. 1 illustrates a sample data
item, which is a structured JSON string containing information about a tweet and
the user who posted it. Furthermore, if the tweet is a retweet, the original tweet
content is also included in a “retweeted_status” field. For hashtags, user-mentions,
and URLs contained in the text of the tweet, an “entities” field is included to give
detailed information, such as the ID of the mentioned user and the expanded
URLs.

In social network analysis, the concept of “meme” is often used to represent a
set of related posts corresponding to a specific discussion topic, communication
channel, or information source shared by users on platforms such as Twitter.
Memes can be identified through elements contained in the text of tweets, such as
keywords, hashtags (e.g., #euro2012), user-mentions (e.g., @youtube), and URLs.
Our social media observatory, Truthy, supports a set of temporal queries for
extracting and generating various information about tweets, users, and memes.
These queries can be categorized into two subsets. The first contains basic queries
for getting the ID or content of tweets created during a given time window from
their text or user information, including:

get-tweets-with-meme (memes, time_window)
get-tweets-with-text (keywords, time_window)
get-tweets-with-user (user_id, time_window)
get-retweets (tweet_id, time_window)

For the parameters, time_window is given in the form of a pair of strings
marking the start and end points of a time window, e.g., [2012-06-08T00:00:00,
2012-06-23T23:59:59]. The memes parameter is given as a list of hashtags, user-

4

mentions, or URLs; memes and keywords may contain wildcards, e.g., “#occupy*”
will match all tweets containing hashtags starting with “#occupy.”

Fig. 1. An example tweet in JSON format

The second subset of queries extract needed information from the tweets
returned by queries in the first subset. These include timestamp-count, user-post-
count, meme-post-count, meme-cooccurrence-count, get-retweet-edges, and get-
mention-edges. Here for example, user-post-count returns the number of posts
about a given meme by each user. Each “edge” has three components: a “from”
user ID, a “to” user ID, and a “weight” indicating how many times the “from” user
has retweeted the tweets from the “to” user or mentioned the “to” user in his/her
tweets.

The most significant characteristic of these queries is that they all take a time
window as a parameter. This originates from the temporal nature of social
activities. An obvious brute-force solution is to scan the whole dataset, try to
match the content and creation time of each tweet with the query parameters, and
generate the results using information contained in the matched tweets. However,
due to the drastic difference between the size of the entire dataset and the size of
the query result, this strategy is prohibitively expensive. For example, in the time
window [2012-06-01, 2012-06-20] there are over 600 million tweets, while the
number of tweets containing the most popular meme “@youtube” is less than two
million, which is smaller by more than two orders of magnitude.

Traditional distributed inverted indices [23], supported by many existing
distributed NoSQL database systems such as Solandra (DataStax) [9] and Riak
[18], do not provide the most efficient solution to locate relevant tweets by their

5

text content. One reason is that traditional inverted indices are mainly designed for
text retrieval applications, where the main goal is to efficiently find the top K
(with a typical value of 20 or 50 for K) most relevant text documents regarding a
query comprising a set of keywords. To achieve this goal, information, such as
frequency and position of keywords in the documents, is stored and used for
computing relevance scores between documents and keywords during query
evaluation. In contrast, social media data queries are designed for analysis
purposes, meaning that they have to process all the related tweets, instead of the
top K most relevant ones, to generate the results. Therefore, data regarding
frequency and position are extra overhead for the storage of inverted indices, and
relevance scoring is unnecessary in the query evaluation process. The query
evaluation performance can be further improved by removing these items from
traditional inverted indices.

Secondly, social media queries do not favor query execution plans using
traditional inverted indices. Fig. 2 illustrates a typical query execution plan for
get-tweets-with-meme, using two separate indices on memes and tweet creation
time. This plan uses the meme index to find the IDs of all tweets containing the
given memes and utilizes the time index to find the set of tweet IDs within the
given time window, finally computing the intersection of these two sets to get the
results. Assuming the size of the posting lists for the given memes to be m, and the
number of tweet IDs coming from the time index to be n, the complexity of the
whole query evaluation process will be O(m + n) = O(max(m, n)), using a merge-
based or hashing-based algorithm for the intersection operation. However, due to
the characteristics of large social media and microblogging datasets, there is
normally an orders-of-magnitude difference between m and n, as discussed above.
As a result, although the size of the query result is bounded by min(m, n), a major
part of query evaluation time is actually spent on scanning and checking irrelevant
entries of the time index. In classic text search engines, techniques such as
skipping or frequency-ordered inverted lists [23] may be utilized to quickly return
the top K most relevant results without evaluating all the related documents.
However, such optimizations are not applicable to our social media observatory.
Furthermore, in case of a high cost estimation for accessing the time index, the
search engine may choose to only use the meme index and generate the results by
checking the content of relevant tweets. However, valuable time is still wasted in
checking irrelevant tweets falling out of the given time window. The query
evaluation performance can be further improved if the unnecessary scanning cost
can be avoided.

6

Fig. 2. A typical query execution plan using indices on meme and creation time

We propose using a customized index structure in IndexedHBase, as illustrated
in Fig. 3. It merges the meme index and time index, and replaces the frequency
and position information in the posting lists of the meme index with creation time
of corresponding tweets. Facilitated by this customized index structure, the query
evaluation process for get-tweets-with-meme can be easily implemented by going
through the index entries related to the given memes and selecting the tweet IDs
associated with a creation time within the given time window. The complexity of
the new query evaluation process is O(m), which is significantly lower than
O(max(m, n)). To support such index structures, IndexedHBase provides a general
customizable indexing framework, which will be explained in Section 3.

Fig. 3. A customized meme element index structure

3. Design and Implementation of IndexedHBase

3.1 System Architecture

HBase is used to host the entire dataset and related indices with two sets of tables:
data tables for the original data, and index tables containing customized index
structures for query evaluation (see Fig. 4). The customized indexing framework
supports two mechanisms for building index tables: online indexing that indexes
data upon upload to the tables, and batch indexing for building new index
structures from existing data tables. Two data loading strategies are implemented

7

for historical and streaming data. The parallel query evaluation strategy provides
efficient evaluation mechanisms for all queries, and is used by upper-level
applications, such as Truthy, to generate various statistics and visualizations.

Fig. 4. System Architecture of IndexedHBase

3.2 Customizable Indexing Framework

Table Schemas on HBase

Working off the extendible “BigTable” data model [5], we design the table
schemas in Fig. 5. Tables are managed in units of months. This has two benefits.
First, the loading of streaming data only changes the tables relative to the current
month. Secondly, during query evaluations, the amount of index data and original
data scanned is limited by the time window parameter.

Some details need to be clarified before proceeding further. Each table contains
only one column family, e.g. “details” or “tweets”. The user table uses a
concatenation of user ID and tweet ID as the row key, because analysis benefits
from tracking changes in a tweet’s user metadata. For example, a user can change
profile information, which can give insights into her behavior. Another meme
index table is created for the included hashtags, user-mentions, and URLs. This is
because some special cases, such as expandable URLs, cannot be handled
properly by the text index. The memes are used as row keys, each followed by a
different number of columns, named after the IDs of tweets containing the
corresponding meme. The timestamp of the cell value marks the tweet creation
time (Fig. 5).

8

Fig. 5. Table schemas used in IndexedHBase for Twitter data

Using HBase tables for customized index has several advantages. The data
model of HBase can scale out horizontally for distributed index structure and
embed additional information within the columns. Since the data access pattern in
social media analysis is “write-once-read-many”, IndexedHBase builds a separate
table for each index structure for easy update and access. Rows in the tables are
sorted by row keys, facilitating prefix queries through range scans over index
tables. Using Hadoop MapReduce, the framework can generate efficient parallel
analysis on the index data, such as meme popularity distribution [21].

Customizable Indexer Implementation

IndexedHBase implements a customizable indexer library, shown in Fig. 6, to
generate index table records automatically according to the configuration file and
insert them upon the client application’s request.

Fig. 6. Components of customizable indexer

9

Fig. 7 gives an example of the index configuration file in XML format
containing multiple “index-config” elements that hold the mapping information
between one source table and one index table. This element can flexibly define
how to generate records for the index table off a given row from the source table.
For more complicated index structures, users can implement a customizable
indexer and use it by setting the “indexer-class” element.

Fig. 7. An example customized index configuration file

Both general and user-defined indexers must implement a common interface
which declares one index() method, as presented in Fig. 8. This method takes the
name and row data of a source table as parameters and returns a map as a result.
The key of each map entry is the name of one index table, and the value is a list of
that table’s records.

Upon initialization, the general customizable indexer reads the index
configuration file from the user. If a user-defined indexer class is specified, a
corresponding indexer instance will be created. When index() is invoked during
runtime, all related “index-config” elements are used to generate records for each
index table, either by following the rules defined in “index-config” or by invoking
a user-defined indexer. Finally, all index table names and records are added to the
result map and returned to the client application.

Fig. 8. Pseudocode for the “CustomizableIndexer” interface

Online Indexing Mechanism and Batch Indexing Mechanism

IndexedHBase provides two means of indexing data: online and batch. The online
mechanism is implemented through the insert() method of the general
customizable indexer, displayed in Fig. 6. The client application invokes the

10

insert() method of the general customizable indexer to insert one row into a source
table. The indexer will first insert the given row into the source table and then
generate index table records for this row by invoking index() and insert them into
the corresponding index tables. Therefore, from the client application’s
perspective, data in the source table are indexed “online” when first inserted into
the table.

The batch indexing mechanism is designed for generating new customized
index tables after all the data have been loaded into the source table. This
mechanism is implemented as a “map-only” MapReduce job using the source
table as input. The job accepts a source table and index table name as parameters
and starts multiple mappers to index data in the source table in parallel, each
processing one region of the table. Each mapper works as a client application to
the general customizable indexer and creates one indexer instance at its
initialization time. The indexer is initialized using the given index table name so
that when index() is invoked, it will only generate index records for that single
table. The map() function takes a <key, value> pair as input, where “key” is a row
key in the source table and “value” is the corresponding row data. For each row of
the source table, the mapper uses the general customizable indexer to generate
index table records and write these records as output. All output records are
handled by the table output format, which will automatically insert them into the
index table.

3.3 Data Loading Strategies

IndexedHBase supports distributed loading strategies for both streaming data and
historical data. Fig. 9 shows the architecture of the streaming data loading
strategy, where one or more distributed loaders are running concurrently and are
connected to the same stream using the Twitter streaming API. Each loader is
assigned a unique ID and works as a client application to the general customizable
indexer. Upon receiving a tweet JSON string, the loader will first take the tweet
ID and do a modulus operation over the total number of loaders in the system. If
the result equals its loader ID, it will load the tweet to IndexedHBase. Otherwise
the tweet is skipped. To load a tweet, the loader first generates records for the
tweet table and user table based on the JSON string, then loads them into the
tables by invoking the insert() method of the general customizable indexer, which
will complete online indexing and update all the data tables as well as the relevant
index tables.

11

Fig. 9. Streaming data loading strategy

The historical data loading strategy is implemented as a MapReduce program.
One separate job is launched to load the historical files for each month, and
multiple jobs can be running simultaneously. Each job starts multiple mappers in
parallel, each responsible for loading one file. At running time, each line in the
.json.gz file is given to the mapper as one input, which contains the string of one
tweet. The mapper first creates records for the tweet table and user table and then
invokes the general customizable indexer to get all the related index table records.
All table records are handled by the multi-table output format, which
automatically inserts them into the related tables. Finally, if the JSON string
contains a “retweeted_status”, the corresponding substring will be extracted and
processed in the same way.

3.4 Parallel Query Evaluation Strategy

We develop a two-phase parallel query evaluation strategy viewable in Fig. 10.
For any given query, the first phase uses multiple threads to find the IDs of all
related tweets from the index tables, and saves them in a series of files containing
a fixed number (e.g., 30,000) of tweet IDs. The second phase launches a
MapReduce job to process the tweets in parallel and extract the necessary
information to complete the query. For example, to evaluate user-post-count, each
mapper in the job will access the tweet table to figure out the user ID
corresponding to a particular tweet ID, count the number of tweets by each user,
and output all counts when it finishes. The output of all the mappers will be
processed to finally generate the total tweet count of each user ID.

Two aspects of the query evaluation strategy deserve further discussion. First,
as described in Section 2, prefix queries can be constructed by using parameters
such as “#occupy*”. IndexedHBase provides two options for getting the related

12

tweet IDs in the first phase. One is simply to complete a sequential range scan of
rows in the corresponding index tables. The other is to use a MapReduce program
to complete parallel scans over the range of rows. The latter option is only faster
for parameters covering a large range spanning multiple regions of the index table.

Second, the number of tweet IDs in each file implies a tradeoff between
parallelism and scheduling overhead. When this number is set lower, more
mappers will be launched in the parallel evaluation phase, which means the
amount of work done by a mapper decreases while the total task scheduling
overhead increases. The optimal number depends on the total number of related
tweets and the amount of resources available in the infrastructure. We set the
default value of this number to 30,000 and leave it configurable by the user.
Future work will explore automatic optimization.

Fig. 10. Two-phase parallel evaluation process for an example user-post-count query

4. Performance Evaluation Results and Comparison with Riak

4.1 Testing Environment Configuration

We use eight nodes on the Bravo cluster of FutureGrid to complete tests for both
IndexedHBase and Riak. The hardware configuration for all eight nodes is listed
in Table 1. Each node runs CentOS 6.4 and Java 1.7.0_21. For IndexedHBase,
Hadoop 1.0.4 and HBase 0.94.2 are used. One node is used to host the HDFS
headnode, Hadoop jobtracker, Zookeeper, and HBase master. The other seven
nodes are used to host HDFS datanodes, Hadoop tasktrackers, and HBase region
servers. The data replication level is set to two on HDFS. The configuration
details of Riak will be given in Section 4.2. In addition to Bravo, we also use the
Alamo HPC cluster of FutureGrid to test the scalability of the historical data
loading strategy of IndexedHBase, since Alamo can provide a larger number of
nodes through dynamic HPC jobs. Software configuration of Alamo is mostly the
same as Bravo.

13

Table 1. Per-node configuration on Bravo and Alamo Clusters

Cluster CPU RAM Hard
Disk

Network

Bravo 8 * 2.40GHz (Intel Xeon E5620) 192G 2T 40Gb InfiniBand
Alamo 8 * 2.66GHz (Intel Xeon X5550) 12G 500G 40Gb InfiniBand

4.2 Configuration and Implementation on Riak

Riak is a distributed NoSQL database for storing data in the form of <key, value>
objects. It uses a P2P architecture to organize the distributed nodes and distributes
data objects among them using consistent hashing. Data are replicated to achieve
high availability, and failures are handled by a handoff mechanism among
neighboring nodes. A “Riak Search” module can build distributed inverted indices
on data objects for full-text search purposes. Users can use buckets to organize
their data objects and configure indexed fields on the bucket level. Riak supports a
special feature called “inline fields.” If a field is specified as an “inline” field, its
value will be attached to the document IDs in the posting lists, as illustrated in
Fig. 11.

Fig. 11. An example of inline field (created_at) in Riak

Similar to our customized index tables in IndexedHBase, inline fields can be
used to carry out an extra filtering operation to speed up queries involving
multiple fields. However, they are different in two basic aspects. First, inline fields
are an extension of traditional inverted indices, which means overhead such as
frequency information and document scoring still exist in Riak Search. Second,
customizable index structures are totally flexible in the sense that the structure of
each index can be independently defined to contain any subset of fields from the
original data. In contrast, if one field is defined as an inline field on Riak, its value
will be attached to the posting lists of the indices of all indexed fields, regardless
of whether it is useful. As an example, the “sname index table” in Fig. 5 uses the
creation time of user accounts as timestamps, while the “meme index table” uses
creation time of tweets. Such flexibility is not achievable on Riak.

In our tests, all eight nodes of Bravo are used to construct a Riak ring. Each
node runs Riak 1.2.1, using LevelDB as the storage backend. We create two
different buckets to index data with different search schemas. The data replication
level is set to two on both buckets. The tweet ID and JSON string of each tweet

14

are directly stored into <key, value> pairs. The original JSON string is extended
with an extra “memes” field, which contains all the hashtags, user-mentions, and
URLs in the tweet, separated tab characters. Riak Search is enabled on both
buckets, and the user_id, memes, text, retweeted_status_id, user_screen_name,
and created_at fields are indexed. Specifically, created_at is defined as a separate
indexed field on one bucket, and as an “inline only” field on the other bucket,
meaning that it does not have a separate index but is stored together with the
indices of other fields.

Riak provides a lightweight MapReduce framework for users to query the data
by defining MapReduce functions in JavaScript. Furthermore, Riak supports
MapReduce over the results of Riak Search. We use this feature to implement
queries, and Fig. 12 shows an example query implementation. When this query is
submitted, Riak will first use the index on “memes” to find related tweet objects
(as specified in the “input” field), then apply the map and reduce functions to
these tweets (as defined in the “query” field) to get the final result.

Fig. 12. An example query implementation on Riak

4.3 Data Loading Performance

Historical Data Loading Performance

We use all the .json.gz files from June 2012 to test the historical data loading
performance of IndexedHBase and Riak. The total data size is 352GB. With
IndexedHBase, a MapReduce job is launched for historical data loading, with each
mapper processing one file. With Riak, all 30 files are distributed among eight
nodes of the cluster, so each node ends up with three or four files. Then an equal
number of threads per node were created to load all the files concurrently to the
bucket where “created_at” is configured as an inline field. Threads continue
reading the next tweet, apply preprocessing with the “created_at” and “memes”
field, and then send the tweet to the Riak server for indexing and insertion.

15

Table 2. Historical data loading performance comparison

 Loading
time
(hours)

Loaded
total data
size (GB)

Loaded
original data
size (GB)

Loaded index
data size (GB)

Riak 294.11 3258 2591 667
IndexedHBase 45.47 1167 955 212
Riak / IndexedHBase 6.47 2.79 2.71 3.15

Table 2 summarizes the data loading time and loaded data size on both
platforms. We can see that IndexedHBase is over six times faster than Riak in
loading historical data and uses significantly less disk space for storage.
Considering the original file size of 352GB and a replication level of two, the
storage space overhead for index data on IndexedHBase is moderate.

We analyze these performance measurements below. By storing data with
tables, IndexedHBase applies a certain degree of data model normalization, and
thus avoids storing some redundant data. For example, many tweets in the original
.json.gz files contain retweeted status, and many of them are retweeted multiple
times. With IndexedHBase, even if a tweet is retweeted repeatedly, only one
record is kept for it in the tweet table. With Riak, such a “popular” tweet will be
stored within the JSON string of every corresponding retweet. The difference in
loaded index data size clearly demonstrates the advantage of a fully customizable
indexing framework. By avoiding frequency and position information and only
incorporating useful fields in the index tables, IndexedHBase saves 455GB of disk
space in storing index data, which is more than 1/3 the total loaded data size of
1167GB. Also note that IndexedHBase compresses table data using Gzip, which
generally provides a better compression ratio than Snappy used on Riak.

The difference in loaded data size only explains a part of the difference in total
loading time. Two other reasons are:
(1) The loaders of IndexedHBase are responsible for generating both data tables

and index tables. Therefore, the JSON string of each tweet is parsed only once
when it is read from the .json.gz files and converted to table records. On the
other hand, Riak uses servers for its indexing and so each JSON string is
actually parsed twice – first by the loaders for preprocessing, and again by the
server for indexing;

(2) When building inverted indices, Riak not only uses more space to store the
frequency and position information, but also spends more time collecting
them.

Scalable Historical Data Loading on IndexedHBase

We test the scalability of historical data loading on IndexedHBase with the Alamo
cluster of FutureGrid. In this test we take a dataset for two months, May and June
2012, and measure the total loading time with different cluster sizes. The results

16

are illustrated in Fig. 13. When the cluster size is doubled from 16 to 32 data
nodes, the total loading time drops from 142.72 hours to 93.22 hours, which
implies a sub-linear scalability coming from the concurrent access from mappers
of the loading jobs to HBase region servers. Nonetheless, these results clearly
demonstrate that we get more system throughput and faster data loading speed by
adding more nodes to the cluster.

Fig. 13. Historical data loading scalability

to cluster size

Fig. 14. Results for streaming data loading

test

Streaming Data Loading Performance on IndexedHBase

The purpose of streaming data loading tests is to verify that IndexedHBase can
provide enough throughput to accommodate the growing data speed of the Twitter
streaming API. To test the performance of IndexedHBase for handling potential
data rates even faster than the current streams, we design a simulation test using a
recent .json.gz file from July 3, 2013. We vary the number of distributed
streaming loaders and test the corresponding system data loading speed. For each
case, the whole file is evenly split into the same number of fragments as the
loaders and then distributed across all the nodes. One loader is started to process
each fragment. The loader reads data from the stream of the local file fragment
rather than from the Twitter streaming API. So this test measures how the system
performs when each loader gets an extremely high data rate that is equal to local
disk I/O speed.

Fig. 14 shows the total loading time when the number of distributed loaders
increases by powers of two from one to 16. Once again, concurrent access to
HBase region servers results in a decrease in speed-up as the number of loaders is
doubled each time. The system throughput is almost saturated when we have eight
distributed loaders. For the case of eight loaders, it takes 3.85 hours to load all
45,753,194 tweets, indicating the number of tweets that can be processed per day
on eight nodes is about six times the current daily data rate. Therefore,
IndexedHBase can easily handle a high-volume stream of social media data. In the
case of vastly accelerated data rates, as would be the case for the Twitter firehose
(a stream of all public tweets), one could increase the system throughput by
adding more nodes.

17

4.4 Query Evaluation Performance

Separate Index Structures vs. Customized Index Structures

As discussed in Section 2, one major purpose of using customized index structures
is to achieve lower query evaluation complexity compared to traditional inverted
indices on separate data fields. To verify this, we use a simple get-tweets-with-
meme query to compare the performance of IndexedHBase with a solution using
separate indices on the fields of memes and tweet creation time, which is
implemented through the Riak bucket where “created_at” is defined as a
separately indexed field.

Fig. 15. Query evaluation time with
separate meme and time indices (Riak)

Fig. 16. Query evaluation time with
customized meme index (IndexedHBase)

In this test we load four days’ data to both IndexedHBase and the Riak bucket
and measure the query evaluation time with different memes and time windows.
For memes, we choose “#usa”, “#ff”, and “@youtube”, each contained in a
different subset of tweets. The “#ff” hashtag is a popular meme for “Follow
Friday.” For each meme, we use three different time windows with a length
between one and three hours. Queries in this test only return tweet IDs – they
don’t launch an extra MapReduce phase to get the content. Figs. 15 and 16 present
the query execution time for each indexing strategy. As shown in the plots,
IndexedHBase not only achieves a query evaluation speed that is tens to hundreds
of times faster, but also demonstrates a different pattern in query evaluation time.
When separate meme index and time index are used, the query evaluation time
mainly depends on the length of time window; the meme parameter has little
impact. In contrast, using a customized meme index, the query evaluation time
mainly depends on the meme parameter. For the same meme, the evaluation time
only increases marginally as the time window gets longer. These observations
confirm our theoretical analysis in Section 2.

18

Query Evaluation Performance Comparison

This set of tests is designed to compare the performance of Riak and
IndexedHBase for evaluating queries involving different numbers of tweets and
different result sizes. Since using separate indices has proven inefficient on Riak,
we choose to test the query implementation using “created_at” as an inline field.
Queries are executed on both platforms against the data loaded in the historical
data loading tests. For query parameters, we choose the popular meme
“#euro2012,” along with a time window with a length varied from three hours to
16 days. The start point of the time window is fixed at 2012-06-08T00:00:00, and
the end point is correspondingly varied exponentially from 2012-06-08T02:59:59
to 2012-06-23T23:59:59. This time period covers a major part of the 2012 UEFA
European Football Championship. The queries can be grouped into three
categories based on the manner in which they are evaluated on Riak and
IndexedHBase.
(1) No MapReduce on either Riak or IndexedHBase

The meme-post-count query falls into this category. On IndexedHBase, query
evaluation is done by simply going through the rows in meme index tables for
each given meme and counting the number of qualified tweet IDs. In the case of
Riak, since there is no way to directly access the index data, this is accomplished
by issuing an HTTP query for each meme to fetch the “id” field of matched
tweets. Fig. 17 shows the query evaluation time on Riak and IndexedHBase. As
the time window gets longer, the query evaluation time increases for both.
However, the absolute evaluation time is much shorter for IndexedHBase, because
Riak has to spend extra time to retrieve the “id” field.
(2) No MapReduce on IndexedHBase; MapReduce on Riak

The timestamp-count query belongs to this category. Inferring from the schema
of the meme index table, this query can also be evaluated by only accessing the
index data on IndexedHBase. On Riak it is implemented with MapReduce over
Riak search results, where the MapReduce phase completes the timestamp
counting based on the content of the related tweets. Fig. 18 shows the query
evaluation time on both platforms. Since IndexedHBase does not need to analyze
the content of the tweets at all, its query evaluation speed is orders of magnitude
faster than Riak.
(3) MapReduce on both Riak and IndexedHBase

Most queries require a MapReduce phase on both Riak and IndexedHBase. Fig.
19 shows the evaluation time for several of them. An obvious trend is that Riak is
faster on queries involving a smaller number of related tweets, but IndexedHBase
is significantly faster on queries involving a larger number of related tweets and
results. Fig. 20 lists the results sizes for two of the queries. The other queries have
a similar pattern.

19

Fig. 17. Query evaluation time for meme-

post-count
Fig. 18. Query evaluation time for

timestamp-count

Fig. 19. Query evaluation time for queries requiring MapReduce on both platforms

20

Fig. 20. Result sizes for get-tweets-with-meme (top row) and

get-mention-edges (bottom row) queries

The main reason for the observed performance difference is the different

characteristics of the MapReduce framework on these two platforms.
IndexedHBase relies on Hadoop MapReduce, which is designed for fault tolerant
parallel processing of large batches of data. It implements the full semantics of the
MapReduce computing model and applies a comprehensive initialization process
for setting up the runtime environment on the worker nodes. Hadoop MapReduce
uses disks on worker nodes to save intermediate data and does grouping and
sorting before passing them to reducers. A job can be configured to use zero or
multiple reducers. Since most social media queries use time windows at the level
of weeks or months, IndexedHBase can handle these long time period queries
well.

The MapReduce framework on Riak, on the other hand, is designed for
lightweight use cases where users can write simple query logic with JavaScript
and get them running on the data nodes quickly without a complicated
initialization process. There is always only one reducer running for each
MapReduce job. Intermediate data are transmitted directly from mappers to the
reducer without being sorted or grouped. The reducer relies on its memory stack to
store the whole list of intermediate data, and has a default timeout of only five
seconds. Therefore, Riak MapReduce is not suitable for processing the large
datasets produced by queries corresponding to long time periods.

Improving Query Evaluation Performance with Modified Index Structures

IndexedHBase accepts dynamic changes to the index structures for efficient query
evaluation. To verify this, we extend the meme index table to also include user
IDs of tweets in the cell values, as illustrated in Fig. 21. Using this new index
structure, IndexedHBase is able to evaluate the user-post-count query by only
accessing index data.

21

Fig. 21. Extended meme index table schema Fig. 22. Query evaluation time modified

meme index table schema
We use the batch indexing mechanism of IndexedHBase to rebuild the meme

index table, which takes 3.89 hours. The table size increases from 14.23GB to
18.13GB, which is 27.4% larger. Fig. 22 illustrates the query evaluation time
comparison. The query with the new index structure is faster by more than an
order of magnitude. In cases where user-post-count is frequently used, the query
speed improvement is clearly worth the additional storage required.

5. Related Work

IndexedHBase aims to address the temporal challenge in social media analytics
scenarios. Derczynski et al. [10] provide a more complete list of related work
about temporal and spatial queries involving social data. Our customizable index
structures share similar inspiration to multiple-column indices used in relational
databases, but index a combination of full-text and primitive-type fields.
Compared with traditional inverted indices [23], IndexedHBase provides more
flexibility about what fields to use as keys and entries, so as to achieve more
efficient query evaluation with less storage and computation overhead.

Solandra (DataStax) [9] and Riak [18] are two typical NoSQL database systems
that support distributed inverted indices for full-text search. Specifically, Solandra
is an offshoot of Cassandra, which uses a similar data model to HBase.
Comparable to Riak, Cassandra also employs P2P architecture to support scalable
data storage and relies on data replication to achieve fault-tolerance. As discussed
in Section 2, inverted indices on Solandra and Riak are designed for text retrieval
applications, making them unsuitable for social media analytics.

Google’s Dremel [15] achieves efficient evaluation of aggregation queries on
large-scale nested datasets by using distributed columnar storage and multi-level
serving trees. Power Drill [13] explores special caching and data skipping
mechanisms to provide even faster interactive query performance for certain
selected datasets. Percolator [17] replaces batch indexing system with incremental
processing for Google search. Inspired by Dremel and Power Drill, we will
consider splitting the tweet table into more column families for even better query

22

evaluation performance. On the other hand, our customizable indexing strategies
could also potentially help Dremel for handling aggregation queries with highly
selective operations.

Zaharia et al. [22] propose a fault-tolerant distributed processing model for
streaming data by breaking continuous data streams into small batches and then
applying existing fault-tolerance mechanisms used in batch processing
frameworks. This idea of discretized streams will be useful for our next step of
developing a fault-tolerant streaming data processing framework. Since streaming
data are mainly involved in the loading and indexing phase, simpler failure
recovery mechanisms may be more suitable.

6. Conclusions and Future Work

This chapter studies an efficient and scalable storage platform supporting a large
Twitter stream that powers the Truthy system [14], a public social media
observatory. Our experimentation with IndexedHBase led to interesting
conclusions of general significance. Parallelization and indexing are key factors in
addressing the sheer data size and temporal queries of social data observatories.
Parallelism in particular requires attention to every stage of data processing.
Furthermore, a general customizable indexing framework is necessary. Index
structures should be flexible, rather than static, to facilitate special characteristics
of the dataset and queries, where optimal query evaluation performance is
achieved at lower cost in storage and computation overhead. Reliable parallel
processing frameworks such as Hadoop MapReduce can handle large intermediate
data and results involved in the query evaluation process.

To the best of our knowledge, IndexedHBase is the first effort in developing a
totally customizable indexing framework on a distributed NoSQL database. In the
future we will add failure recovery to the distributed streaming data loading
strategy. The efficiency of parallel query evaluation can be further improved with
data locality considerations. Spatial queries will be supported by inferring and
indexing spatial information contained in tweets. Thanks to the batch index
building mechanism in IndexedHBase, adding spatial indices can be done
efficiently without completely reloading the original dataset. Finally, we will
integrate IndexedHBase with Hive [3] to provide a SQL-like data operation
interface for easy implementation in social media observatories such as Truthy.

Acknowledgments

We would like to thank Onur Varol, Alessandro Flammini, Geoffrey Fox, and
other colleagues and members of the Center for Complex Networks and Systems
Research (cnets.indiana.edu) at Indiana University for helpful discussions and

23

contributions to the Truthy Project and the present work. We gratefully
acknowledge partial support from the National Science Foundation (grant CCF-
1101743), DARPA (grant W911NF-12-1-0037), and the J. S. McDonnell
Foundation. We would also like to personally thank Koji Tanaka and the rest of
the FutureGrid team for their continued help. FutureGrid is supported by National
Science Foundation (NSF) under Grant No. 0910812 to Indiana University for
“An Experimental, High-Performance Grid Test-bed.” IndexedHBased is in part
supported by National Science Foundation grant OCI-1149432 for CAREER
Award.

References

[1] Apache Hadoop. http://hadoop.apache.org/.
[2] Apache HBase. http://hbase.apache.org/.
[3] Apache Hive. http://hive.apache.org/.
[4] Lilian Weng, Jacob Ratkiewicz, Nicola Perra, Bruno Gonçalves, Carlos Castillo, Francesco

Bonchi, Rossano Schifanella, Filippo Menczer and Alessandro Flammini: The role of
information diffusion in the evolution of social networks. Proc. 19th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), 2013.

[5] Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes,
A., Gruber, R. (2006). Bigtable: A Distributed Storage System for Structured Data.
Proceedings of the 7th Symposium on Operating System Design and Implementation, (OSDI
2006).

[6] Conover, M., Ratkiewicz, J., Francisco, M., Goncalves, B., Flammini, A., Menczer, F.
(2011). Political Polarization on Twitter. Proceedings of the 5th International AAAI
Conference on Weblogs and Social Media, (ICWSM 2011).

[7] Conover, M., Davis, C., Ferrara, E., McKelvey, K., Menczer, F., Flammini, A. (2013). The
Geospatial Characteristics of a Social Movement Communication Network. PLoS ONE 8(3):
e55957.

[8] Conover, M., Ferrara, E., Menczer, F., Flammini, A. (2013). The Digital Evolution of Occupy
Wall Street. PloS ONE, 8(5), e64679.

[9] DataStax. http://www.datastax.com/.
[10] Derczynski, L., Yang, B., Jensen, C. (2013). Towards Context-Aware Search and Analysis

on Social Media Data. Proceedings of the 16th International Conference on Extending
Database Technology, (EDBT 2013).

[11] DiGrazia, J., McKelvey, K., Bollen, J., Rojas, F. (2013). More Tweets, More Votes: Social
Media as an Indicator of Political Behavior. Working paper, Indiana University.

[12] Graefe, G. (1993). Query evaluation techniques for large databases. ACM Computing
Surveys (CSUR), 25(2): 73-169.

[13] Hall, A., Bachmann, O., Büssow, R., Gănceanu, S., Nunkesser, M. (2012). Processing a
Trillion Cells per Mouse Click. Proceedings of the 38th International Conference on Very
Large Data Bases, (VLDB 2012).

[14] McKelvey, K., Menczer, F. (2013). Design and Prototyping of a Social Media Observatory.
Proceedings of the 22nd international conference on World Wide Web companion, (WWW
2013).

[15] Melnik, S., Gubarev, A., Long, J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.
(2010). Dremel: Interactive Analysis of Web-Scale Datasets. Proceedings of the 36th
International Conference on Very Large Data Bases, (VLDB 2010).

http://hadoop.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://www.datastax.com/

24

[16] Padmanabhan, A., Wang, S., Cao, G., Hwang, M., Zhao, Y., Zhang, Z., Gao, Y. (2013).
FluMapper: An Interactive CyberGIS Environment for Massive Location-based Social Media
Data Analysis. Proceedings of Extreme Science and Engineering Discovery Environment:
Gateway to Discovery, (XSEDE 2013).

[17] Peng, D., Dabek, F. (2010). Large-scale Incremental Processing Using Distributed
Transactions and Notifications. Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation, (USENIX 2010).

[18] Riak. http://basho.com/riak/.
[19] Twitter Streaming API. https://dev.twitter.com/docs/streaming-apis.
[20] Von Laszewski, G., Fox, G., Wang, F., Younge, A., Kulshrestha, A., Pike, G. (2010).

Design of the FutureGrid Experiment Management Framework. Proceedings of Gateway
Computing Environments Workshop, (GCE 2010).

[21] Weng, L., Flammini, A., Vespignani, A., Menczer, F. (2012). Competition among memes in
a world with limited attention. Nature Sci. Rep., (2) 335, 2012.

[22] Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I. (2012). Discretized Streams: An Efficient
and Fault-Tolerant Model for Stream Processing on Large Clusters. Proceedings of the 4th
USENIX conference on Hot Topics in Cloud Computing, (HotCloud 2012).

[23] Zobel, J. Moffat, A. (2006). Inverted files for text search engines. ACM Computing
Surveys, 38(2) - 6.

http://basho.com/riak/
https://dev.twitter.com/docs/streaming-apis

